嘉峪关楼面铺设光伏承重检测鉴定服务
分布式光伏发电系统施工过程中,可能会有屋面雨水渗漏的风险,应引起重视。
从项目现场勘察阶段到深化设计阶段,必须对屋面未来可能产生的渗漏风险做出充分预估和论证,对任何可能发生雨水渗漏的点要进行详细排查,尽量采用简单有效的技术手段,进行防水技术处理;在工程施工阶段,要避免给屋面防水造成二次风险。
随着光伏发电成本逐渐下降,分布式光伏发电的**率较地面集中式电站具有相对优势,*易被平常百姓家所接受。
闲置的厂房、商业建筑、农村屋顶逐渐被光伏电站投资者所青睐。经济发展较*的地区,农村居民家家户户都用上了太阳能热水器,典型的如江苏、浙江地区,沿着疾驰而过的高铁向远处眺望,看到并排的光伏屋顶,俨然蓝色海洋。
说起屋顶光伏电站,能安装分布式光伏发电系统的屋顶无非是平房、瓦房、彩钢瓦房屋顶。在农村这3种不同的屋顶安装分布式光伏系统需要注意什么问题呢,小编与您一起来探讨。
共同点:
可使用的面积、屋顶朝向、房屋结构、地面基础情况和气象条件、承重能力、屋面防水、老化程度、建筑物遮挡等(此处产权归属不做考虑)。
不同点:
平房屋顶。平房屋安装分布式光伏电站主要是考虑屋顶的承重能力、防水性能,其他方面相对前两者考虑的因素要简单很多。
瓦房屋顶。瓦房屋顶安装光伏电站,需要考虑屋顶的朝向、方位角、屋顶倾斜角、瓦片的类型及尺寸、防水等,还要考虑屋顶的遮掩面积及掀开部分瓦片的屋顶结构等。
1、 计算参数
现业主准备在屋面加设光伏太阳能设备,根据业主的要求,综合现场检测的实际结构情况对该结构进行整体分析计算。
经检测,现场屋面做法为:(1)深蓝色彩钢夹芯板;(2)保温棉;(3)斜卷边z形檩条。
验算荷载取值:恒载:0.3 kn/m2。
变更前活载:0.5 kn/m2(验算檩条);0.3kn/m2(验算刚架)
变更后活载:0.83 kn/m2(验算檩条);0.63kn/m2(验算刚架)
吊车荷载:5t(③~⑦轴每跨一台,)
基本风压:0.55kn/m2,地面粗糙度为b类
基本雪压:0.20kn/m2
2、门式刚架承载力验算
本次采用中国建筑科学研究院结构计算程序pkpm(v3.1版)系列软件sts模块对典型刚架(1-7/e轴)按实测结构布置及构件截面尺寸进行建模,并对该厂房进行结构承载力验算。计算模型见附图4。
(1)原结构荷载验算
验算结果表明,厂房原结构荷载作用下,钢柱作用弯矩与考虑屈曲后强度抗弯承载力比值、平面内稳定应力比均小于1,满足承载力计算要求,gz2、gz6平面外稳定应力比大于1,不满足承载力计算要求;钢梁作用弯矩与考虑屈曲后强度抗弯承载力比值、平面内稳定应力比、平面外稳定应力比均小于1,满足承载力计算要求。gz2平面外稳定长细比不满足规范要求,其余各构件长细比均满足规范要求。验算结果参见附图5。
(2)屋面增加光伏板荷载验算
厂房在屋面增加光伏板荷载作用下,钢柱gz3、gz4作用弯矩与考虑屈曲后强度抗弯承载力比值、平面内稳定应力比、平面外稳定应力比小于1,满足承载力计算要求;gz1、gz2、gz7平面内稳定应力比大于1;gz2、gz7平面内长细比不满足计算要求;gz2、gz5、gz6平面外稳定应力比大于1,不满足承载力计算要求;gz2平面外长细比不满足计算要求。钢梁平面内稳定应力比、平面外稳定应力比、作用弯矩与考虑屈曲后强度抗弯承载力比均大于1,不满足承载力计算要求。
什么是屋面光伏系统:
1光伏建筑屋面
太阳能光伏建筑屋面,是将太阳能发电(光伏)产品集成或结合到建筑屋面上的技术。它不但具有屋面外围护结构的功能,又能产生电能供建筑使用。bipv是“建筑物产生能源”新概念的建筑,是利用太阳能可再生能源的建筑。
太阳能光伏建筑屋面不等于太阳能光伏加建筑屋面,不是两者简单的“相加”,而是根据节能、环保、安全、美观和经济实用的总体要求,将太阳能光伏发电作为建筑屋面的一种体系引入建筑领域,纳入建设工程基本建设程序,同步设计、同步施工、同步验收,与建设工程投入使用,并且同步后期管理,使其成为建筑有机组成部分的一种理念、一种设计、一种工程的总称。
光伏建筑屋面的**技术,一体化设计、一体化制造、一体化安装。而其辅助技术则包括了低能耗、低成本、**、绿色的建筑材料技术。它也是房地产业未来发展的新天地。我国的建筑业正处在由粗放型转向精密型的过渡时期,随着bipv的应用,房产的升值将会逐步地转变到更多地依靠科技*的含量和提升,以及采用*加科学和严格的价格评价体系上来,从而告别房地产只能靠恶性炒作加*升值的时代,使建筑行业能够协同采用多门技术,丰富建筑物的科技内涵,提高其使用*,成为产品附加值高的高产出行业。所有这些,也使程行业*大地拓展自己的市场和发展空间,成为我国社会和经济发展的支柱型产业。光伏建筑屋面应用优势2.1
有效利用建筑屋面.由于太阳能能量密度较低,且高度分散,为提供所需的能源,必须有足够的接收面积。据测算,为满足2000年全球电力的需求,以太阳能电池能源转换率10%计算,需要的接收面积为840km×840km=640000km2,这相当于德国和意大利两个国家面积的总和。我国的发电量约为1亿mw·h,如果全部用太阳能电池发电,其接收面积约需12500km2,比天津市还要大。以上数值表明,太阳能能量所需接收面积相当可观,而光电与建筑屋面一体化将有效利用建筑物的建筑屋面外表面积,是解决接收面积的主要途径可降低成本研究表明,如果设计院、建材生产
商和光伏制造商能够充分协作,光伏建筑屋面一体化发电,单位制造成本比单独生产光伏组件的成本低,可能比单独的光伏发电还要低。